For organic wine, sharing information isn’t always better

Premise one: Organic labeling laws are complicated, non-intuitive, vary from country to country, and are disputed more or less everywhere.

Premise two: When Joni Mitchell sings “give me spots on my apples, but leave me the birds and the bees,” not everyone agrees with her, and some people think the spotty apples aren’t going to be very good.*

Warrant: Because consumers are confused by what “organic” means and because they associate “organic” with forlorn and spotty produce from the non-local and meagre selection at the grocery store, some may think that wine labeled “organic” is sub-par.

The most useful part of a recently published study on “eco-labeling” may not be the data, but the way the authors explain why it’s worth talking about in the first place. They explain “eco-labeling” as being about alleviating information asymmetry between producers and consumers, which is another way of saying that labelling is about trying to share what we know. And with wine, knowledge often goes along with enthusiasm.

Organic wine marketing ends up singing the same song I hear so often from folk in science communication: I know that my science is phenomenally exciting/important; I want to tell everyone else about it; why can’t I get everyone else as excited as I am? All of that excitement and deep caring makes it easy to fall into the solipsistic trap of telling everyone else all of the great details about what I do so that they can know how great it is, too.

Delmas and Lessem’s is only the most recent in a line of studies saying that more sharing isn’t always better. In an online simulated buying exercise, they asked potential wine buyers to choose which bottle they’d prefer to buy amongst a few invented-but-likely California cabernet sauvignons** with labels indicating “organic wine,” “made with organic grapes,” or none of the above. The wines were, in different versions of the exercise, from Napa or from Lodi and priced at $8, $15, $22, or $29.*** Their survey respondents were mostly Californian and younger, better educated, and a good deal better off than national averages, but so are a lot of potential wine consumers and what they found is consistent with previous studies.

A third of their respondents buy organic products on at least half of their shopping trips and 20% said they belonged to some kind of pro-environmental organization, and these folk were more inclined to prefer the organic-labeled wines. But better educated and wealthier respondents were more inclined to choose wines without organic designations. Lower-priced Lodi wines with organic on the label faired better than higher-priced “organic” or “made with organic grapes” Napa wines.

All of this is to say that this study is one more in a pile saying that consumers — even well-heeled Whole Foods-shopping eco-conscious Californian consumers — probably still think organic wine is wan and spotty. If you’re trying to sell premium wine and your environmental conscious leads you down the organic route, more information isn’t necessarily better.

The problem with marketing studies is that despite all their schmancy formulae and big tables full of numbers and tests for statistical significance, they don’t tell us much. Did people who didn’t prefer organic wines (especially the regular organics buyers) avoid them because of past experiences with icky low-quality bottles? Because they’ve heard stories about other people’s experiences with icky low-quality bottles? Because they know the details of the sulfite controversy, or just assume that organic wine isn’t as good, or because they think organic wines are overpriced or have cooties? If we can get those marketing folk to spend some of their time talking to people instead of just crunching numbers, organic supporters will have a better song to sing when we come back to those labeling disputes.

 

*Writes with sadness the person who’s been happily munching spotty apples from a nearby feral apple tree  that easily beat out any of the overhybridized, artificially sweet specimens from the grocery store or even the farmers’ market.

**Amusingly enough, their likely-sounding fictitious wine brands were common French surnames. Because, sensibly enough, consumers expect Californian wines to look and sound French. Really?

***Though how you simulate a believable $8 Napa cab, organic or not, is beyond me. Have I mentioned my qualms with marketing studies? This study makes a lot of assumptions that I find unwarranted, but none that substantially affect the core findings of their survey.

If you could learn which yeasts actually ferment your natural fermentation, would you?

The Australian Wine Research Institute (AWRI) has launched a new winery service. Winemakers can now submit samples from natural/wild/native/non-inoculated ferments (or, conceivably, from an inoculated one if they wanted to) and, courtesy of “next-generation DNA sequencing*,” receive a profile of the yeast species present along with approximate percentages. An additional step can give them more specific strain information, and the AWRI can also isolate, freeze down, and store the main yeasts from your sample as “insurance” if you need them in future vintages.

This sounds like marvelous geekery. Winemakers who don’t inoculate probably wonder about what’s going on in there at least occasionally. What I’m unsure of is whether this yeast profile is a useful management tool beyond a fun way to satisfy your curiosity (or give even more detailed information to very well-heeled consumers). I imagine the following scenarios:

Good natural ferment — You like what’s happening with your uninoculated wine. You’re going to keep making it even if you learn that some generally undesirable bug has part of the action because you know you like the results. Maybe having a yeast profile sets you a benchmark so that if the ferment stops working in some future vintage you can send in a sample for comparison and see if the microbial blend changed, but how does that information then change what you do?

Bad natural ferment – You’ve tried not inoculating a wine and it isn’t working for you for whatever reason. You send in a sample from one that didn’t work (too slow, undesirable flavors, or didn’t finish fermentation). Maybe you’ll learn that some toxic bug is out-competing the yeasts you need to grow, or you’ll identify the source of that high volatile acidity you’ve been combatting. What then? The natural ferment still doesn’t work. Can you tweak pH or how much sulfur dioxide you use or your oxygen management to encourage more favorable microbes against the enemy? I don’t know how likely someone is to successfully adjust or amend a natural ferment to work better at that level — from the perspective of philosophy as well as how likely it is to work — but if you’re going to try these strategies, you’ll likely know to try them without knowing which yeast species are involved.

Planning a natural ferment – Maybe you run a test natural ferment to see whether you like what it does, and you want to “double-check” that it’s okay. The primary information you need stays the same: does it ferment to dryness? does it move fast enough to satisfy your economic needs and peace of mind? does it taste good? These will remain the primary drivers of your decision to move ahead or not, independent of what you learn from that yeast profile.

This service can help answer that perennial question of whether the yeasts in your “wild” ferment are really wild or just commercial yeast strains that have colonized your winery, and to some extent (especially if you go down to that extra strain level sequencing) the degree to which your ferment is different from some other winery’s. But the question — the AU $275 question for running a single sample, or AU $792 for the recommended panel of three samples per ferment — is this: will the extra information change what you do?

Nevertheless, forward-thinking actionability isn’t everything. Even if a winery never tries to replicate a previous successful wine by inoculating with its bespoke mix of strains banked through the system (that seems unlikely to succeed simply given the enormous variability in other parameters affecting wine quality directly and indirectly via influencing yeast growth), a retrospective look at yeast mixes in multiple vintages of the same natural ferment could be interesting. Did a change in viticultural management practices, or source of grapes, or fermenting conditions correlate with a clear change in microbial populations? That prospect makes me hope for two things. First, that a winery (or a dozen or two) will use this as a tool for looking back at the path they’ve taken and not just down at where they’re standing. Second, that when they do, they’ll share.

 

*Next-generation DNA sequencing (this introduction from Nature is dated and technical, but it’s also open-access; the article on Wikipedia is also quite good) is a collection of methods so called because they rely on new strategies for sequencing DNA — not just tweaks of the old traditional way, but really new ways of solving the problem — that let us do things differently, faster, and more efficiently. The most important things to know about next-generation sequencing are that, 1) it’s not a method, but a general term for a whole bunch of methods; 2) the idea has been around since 2008, which doesn’t mean that any of those methods can’t be cutting edge but which does mean that they’ve “trickled down” to the general market by now; and 3) they allow for pulling many sequences from many different organisms out of a single small sample. Old sequencing methods required a relatively large sample of (preferably) a single pure target sequence or else the signals would get so jumbled up that the whole instrument read-out would just look like soup (as I recall well from my first sequencing experiments as an undergrad in 2002-3). Now, we can sequence even single stretches of DNA, and even many different single stretches all hanging out in the same sample from some real-life microbe-rich setting: soil, seawater, or an active ferment. And we can do it quickly and inexpensively enough, now, to offer it as a commercial service. Remember those predictions about what genomics would bring us back around 2000, when sequencing genomes really hit the news? We’re getting there.

Science versus expertise and winemaker trust (and chickens)

I recently wrote an academic manuscript on, among other things, winemakers’ attitudes toward the relative importance of scientifically-supported information and information from personal experience. Some I’ve interviewed trust the science first, last, and always. Some trust experience (theirs or a neighbor’s, but usually theirs) and question the science, and many more fall into more complicated patterns somewhere in-between. To make it clear from the outset, my research takes the stance that none of these attitudes is better or worse than any other.

On what I thought was a completely unrelated topic, I took an hour out of PhD-ing to walk to the library for a book on chicken keeping on Saturday morning. I’d discovered a relic of a chicken coop at the house I’m renting and, as of yesterday, it has two new occupants*. Browsing around on the internet mostly told me that I wanted the coherence and completeness and ease of use that a book could offer.

My tiny neighborhood library had five books on keeping chickens (which tells you something about the neighborhood). Two were memoirs of woman-chicken romances; not what I needed. One was a tiny and poorly type-set volume that tried to cover ducks and guinea fowl and turkeys too; I set that aside. That left two for serious consideration.

I flipped through the much larger volume: professional and impersonal tone, readable text, black and white diagrams, detailed discussion of the various pelleted foods available and exhortations about how to choose the appropriate variety in the few pages I skimmed. The smaller: personal with lots of references to the author’s experiences, strongly authoritative, readable text, cheerful color pictures. I skimmed a page about kitchen scraps as feed with statements like “my chickens can tell the difference between real food and fake food, so don’t try giving them those plastic rolls you get on airplanes” and “people will tell you that citrus is bad for chickens and I’ve never had any problems but you should probably avoid it.”

I took home Jennie French’s Guide to Chooks** and left the Someone’s Guide to Backyard Fowl on the shelf.

On the walk home I realized what I had done. I had chosen the neighborly voice of “well, I tried it this way and it worked for me” over “poultry scientists agree that…”

I had decided between experience versus (not and, but versus) science. I didn’t want to believe that my chickens needed a diet of > 90% commercial feed plus a few kitchen “treats.” I assumed that that advice descended from nutritional guidelines developed for crowded battery farms looking for maximally efficient short-term egg production. I’m different. I want to live with my chickens, all two of them in their jungly run. The research doesn’t apply to me. But Jennie French talking about keeping chickens on her Australian avocado farm…Well, her farm is hot and dry and my garden is cool and wet, but at least she’s being sensible about chickens as productive members of a household.

I’d done exactly what so many of the winemakers I’ve interviewed do: decide that the research probably doesn’t apply to me and trust the more experienced peer who knows how it really is. Even though I’ve been thinking about this stuff (i.e. where stuff = my research on winemakers’ use of/attitudes toward science) for months now, my chicken book experience clarified two things:

1. I didn’t trust that the research applied to me because I couldn’t tell whether the research applied to me. The book didn’t tell me enough about where it’s authoritative recommendations came from for me to know whether or not to believe them. I heard exactly the same thing from winemakers about many of the recommendations in trade magazines: we need more. So, as a writer, the question becomes: how do I provide enough context to be useful?

2. I decided to trust the authoritative recommendations that were closer to what I wanted to do. I was looking to those books not just for information but for validation, to know that the half-formed plan in my head was probably okay and wouldn’t produce immediate chicken death. I sought confirmation, not challenge, because I didn’t want to have to change too much.

Old-fashioned science communication assumed that the scientists were enlightened, people who didn’t agree with them were backwards, and if they were only told about science they’d agree with it anyway (the much-maligned “deficit model”). It treated scientists like a different species of person or, rather, treated non-scientists like they weren’t quite right in the head. I wonder if guys who preached (and still preach) that model ever take home the neighborly chicken book.

 

* The ladies are hand-me-down trial chickens — a bit elderly, not laying for their previous owner, and acquired for free — so, backyard poultry enthusiasts, forgive me for not knowing their details. Mixed-breed both, I think: one smallish standard-looking red one (maybe a Shaver-RIR mix?) and one larger but still light white-blue girl with a bit of a fluffy head. And don’t worry. They’re getting a good, high-protein-with-oyster-grit feed alongside pumpkin seeds and rutabaga peels and outer cabbage leaves.

**Chooks = chickens down-under. For all their laid-back attitude, folks seem to want to abbreviate everything around here.

Fermentation caused by living things? Balderdash!

Small Things Considered is the very endearing blog of the American Society for Microbiology and, like all microbiology, it occasionally touches on alcoholic fermentation. This week, Elio unearthed a hilarious spoof from the early days of fermentation science. Two acclaimed chemists (Justus Liebig and Frederich Wöhler published it in 1839 to make fun of their competitors’ obviously stupid notion that living microorganisms are responsible for the process of fermentation — really, what self-respecting chemist could believe that nonsense! Their imaginings around what those microorganisms might be doing is made even funnier by how close they came — entirely by accident — to the truth. It’s a good laugh, but it’s also a good reminder that so much of what seems patently obvious seemed patent nonsense to our predecessors…and that it can be hard to tell what parts of what we know today might well be balderdash in another hundred years.

Why playing music to wine may not be a cockamamie idea

When is a train like a jazz tune? When someone tries using them to improve wine quality. Recently, Wine-Searcher ran a piece on Juan Ledesma, a Chilean winemaker using waterproof speakers submerged in the barrel to – infuse? – his malbec and cabernet as they age. If you believe that some kind of spirit inheres in all living things even through their killed and processed forms, and also believe that music has spiritual effects, then it might also be logical for you to believe that music has some kind of metaphysical effect on wine that transmutes through its spirit into its physical form, affecting both the taste of the wine and, perhaps, the spirit of the person who consumes it. Fair enough logic. But when I think about music, I think about trains. Trains and music, both, are sources of vibrations which at least theoretically affect on wine quality. What kind of an effect has been a matter of speculation and maybe a little superstition or wishful thinking, but not much research. A few years ago, a winemaker contacted me to ask whether his barrel room being under a railway overpass – and, consequently, being subject to the rumbling vibrations of frequent passing trains – might have some kind of softening effect on the tannins in his reds. Had he consulted what turns out to be a century-long history of winemaker interest in train-derived rumblings, from  he would have found as much or more worry about negative effects as positive. His spiritual predecessors, 1920’s London wine merchants, hoped that their wines stored in barrel under the city’s railway arches would mature faster and to good effect. Sixty years later, a great vinous uproar occurred when the French government proposed a new TGV route to transgress Vouvray in the late 1980’s, not only for fear that vineyards might be destroyed but that vibrations from the train might disrupt cellaring wine. (The not-entirely-equitable solution: a tunnel under the vineyards and anti-vibration mats under the tracks.) The TGV folk purportedly did their own research and found that passing trains had no effect on wine quality, but they never published any details from their studies. Playing music to wine could be dismissed as new-aged nonsense and worrying about trains as old-timer technology resistance. But, both trains and music are sources of vibrations. Vibrations may not make wine “mature” faster, but they could do something. The obvious effect of vibration, at least on wine being aged before fining and filtering, is in stirring up lees. Sound vibrations jostle and stir up wine a bit — just a little, but enough perhaps to keep dead yeast cells that would settle to the bottom of an unjostled tank stirred up and suspended in the wine a bit longer. Interaction with dead yeast cells — lees, when they collect at the bottom of a tank or barrel — changes wine quality: as yeast cells die and decay, they release a slew of interesting cellular leftovers. Some of these add directly to flavor, some give weight and richness to mouthfeel, some we certainly haven’t yet figured out. Increasing “must turbidity” — stirring up the wine — increases the amount of these yeasty components in the finished wine. To date, research on wine and music has involved how shoppers respond to in-store playlists (French music improves French wine sales, German music improves German wine sales) or how ambient music alters our sensory perceptions while tasting (people’s ratings of the weight and sophistication of the wine they drank tended to match the weight and sophistication of the music they heard). We’ve yet to see research on playing music to the wine rather than to the customer, though that looks to change as the Chilean Agricultural Innovation Fund has, the Wine-Searcher piece reports, invested in studying the wine-plus-music phenomenon. Regrettably, no indication from Amtrak that they plan to participate.

And the winner for strangest wine experiment of the year goes to…

Research about the effect of wine on cancer is pretty common. Witness the slew of attention resveratrol has received for being, among other things — like the fountain of eternal youth or your key to firm skin with no injections — an anti-cancer agent. We also see plenty of epidemiological research: the population studies that say things like “moderate red wine drinkers are less likely to develop lung cancer.

How these studies work is easy to understand. Cancer-like cells grown in dishes are bathed in resveratrol-containing solutions and observed afterwards (in vitro = “in glass;” the dishes are more likely plastic these days, but the Romans didn’t have a word for plastic, gosh darn-it). Or whole organisms — mice, worms, humans — are fed resveratrol and observed afterwards (in vivo = “in the living”).

In the “I haven’t seen this before” file is an article released in preliminary form at Cancer Cell International a week or two ago that did things a bit differently. They bathed in vitro lung cancer cells in wine. Picture where your lungs are and where wine goes when you drink it. See the problem?

Wine per se never gets past your stomach. Just about everything we eat is broken down into component parts before being pulled out of the digestive tract and into the blood, with the indigestibles — things that can’t be broken down and transported into the blood, like the cellulose in plants — being left to exit the other end. Where and how a compound makes the move from digestion to blood depends on the compound. Polyphenols, the class of chemical which includes tannins and anthocyanins that give wine astringency and color, respectively, are mostly absorbed in the small intestines. Resveratrol** and alcohol are both fairly unusual in being absorbed directly across the mucous membranes in the mouth and pulled into the bloodstream, which explains why we get drunk so fast as well as why it makes sense to treat cancer cells directly with resveratrol.

Bathing cancer cells in wine is therefore a thing that will never, ever happen in your body. I suppose that cancer patients could be given red wine via an IV, putting it directly into the bloodstream where it would have direct access to cancer cells. Intuitively this seems like a bad idea, though I couldn’t say precisely why. I also don’t know if that’s what these scientists were getting at, or if this was just a “wonder what will happen if we try this” experiment.

It is interesting that very dilute red wine solutions — less than 1% — had specific anti-cancer effects. White wine was only effective at much higher doses – 2-5%. The effect (on specific signal transduction pathways; too complex to explain here) wasn’t the product just of resveratrol or alcohol; the authors haven’t yet figured out what specific wine components are responsible.

French hospitals include wine as part of patients’ regular diets, which I’ve always thought was a much more sensible attitude to nourishing recovery than the insipid and very non-alcoholic slop served up in most American hospitals. Sipping slowly on a glass of red is likely to do you more good than using it to tint your IV drip pink, though who knows? Maybe that is indeed the next thing.

 

**Because resveratrol is absorbed in the mouth, drinking wine is an excellent way to get it into your bloodstream: sipping gives it time to be absorbed. Swallowing a concentrated pill is a terrible mode of delivery. When it’s fast-tracked to the stomach — the pill bypasses those mouth membranes — very little resveratrol makes it out to where it can do any good. For a fantastic, if highly technical run-down of what we currently know about resveratrol, check out the micronutrient pages at the Linus Pauling Institute at Oregon State.

Gluten labelling and the American government’s problem with fermentation

The U.S. Alcohol and Tobacco Tax and Trade Bureau (TTB) has just issued a new ruling on gluten-free labels for alcoholic beverages. Alcoholic beverages made with gluten-containing grains can’t be labeled as gluten-free, no matter what kind of processing they undergo.  That means that “gluten-free” can only show up on beers and whiskeys made entirely from sorghum, rice, teff, or other gluten-free grains (and which aren’t then stored in barrels sealed with wheat paste, which is a real potential source of gluten in alcoholic beverages). The language on this point is surprisingly direct for a document mostly filled with legal jargon thicker than oatmeal stout.

The Food and Drug Administration (FDA)  issued rules in August 2013 saying that foods could be labeled “gluten-free” if they were either made without ingredients that contain gluten or with “an ingredient that is derived from a gluten-containing grain and that has been processed to remove gluten (e.g., wheat starch), if the use of that ingredient results in the presence of 20 parts per million (ppm) or more gluten in the food (i.e., 20 milligrams (mg) or more gluten per kilogram (kg) of food).” But this wording poses a problem for beer and grain-based distilled alcohols. What about whisky, made with gluten-containing grains that aren’t pre-processed to remove gluten but distilled such that gluten never makes it to the bottle?

FDA rules say that “Allowing the ‘gluten-free’ label claim on food whose ingredients have been processed to remove gluten, but not on food that has been processed to remove gluten helps ensure that the finished product has the lowest amount of gluten that is reasonably possible, and consistent with the use of specific manufacturing practices that can prevent gluten cross-contact situations.” And “food labeled gluten-free cannot be intentionally made with any amount of a gluten-containing grain (wheat, rye, barley, or their crossbred hybrids like triticale) or an ingredient derived from such grain that was not processed to remove gluten.”

The new TTB rules extend from those FDA rules. Labels with statements along the lines of “processed to remove gluten” are okay if the producer runs the drink through lab testing demonstrating that it contains less than 20 ppm gluten IF they also say one of the following on the label:

“Product fermented from grains containing gluten and [processed or
treated or crafted] to remove gluten. The gluten content of this product
cannot be verified, and this product may contain gluten.”

OR,

“This product was distilled from grains containing gluten, which
removed some or all of the gluten. The gluten content of this
product cannot be verified, and this product may contain gluten.”

AND explain in detail the process used to remove the gluten. Yeah, right.

The fundamental problem is that the FDA and the TTB don’t think that we have adequately proven detection tools for gluten in alcoholic beverages, and they have a point. There’s surprisingly little published research on detecting gluten in alcoholic beverages. A few studies demonstrate that we can detect gluten in conventional beer and in wines clarified with gluten (see Simonato et al. or Catteneo et al.), but I can’t find any published studies looking for gluten in distilled alcoholic beverages. This looks like a major gap in the literature.

That said, this labelling issue represents in some ways a much bigger problem that the FDA — and the American food regulatory apparatus in general — has with fermented foods of all kinds. We have excellent methods for detecting gluten in food and beverages generally. The FDA is perfectly fine with those methods applied to crackers, or soup, or anything other than “fermented and hydrolyzed foods.” But “fermented and hydrolyzed foods” are different, for some mysteriously unexplained reason.

The US government just doesn’t know what to do with ferments. FDA regulations about refrigeration and hygiene make restaurant foods deliberately left out to grow (beneficial) microbes illegal: house-made lacto-fermented sauerkraut or pickled beets or traditionally-prepared crème fraîche need to be quietly hidden under the table when the health inspector comes ’round. And when implementation of the new Food Safety Modernization Act — which requires that all food preparation facilities be inspected by FDA agents — made its way to wineries last year, inspectors accustomed to touring dairy plants told winemakers that cellar staff should wear hair nets, that crushing outside wasn’t okay because birds could poop onto the grapes, and that dogs weren’t allowed in wineries.

The antibiotic, antibacterial mainstream assumes that bugs are bad, and the government regulations aren’t smart enough to differentiate spoiled = bad from fermented = good. Fermentation culture patriarch Sandor Katz gave a lovely talk at MAD last year that touched on these issues. And thanks in no small part to people like Katz (really, thanks in no small part to Katz; the guy is a fermentation powerhouse, an icon for the movement, and one of my veritable heroes), foodie activists are fighting in small, quiet ways against the  bacteria-are-bad mainstream and building a strong counter-culture capable of recognizing that refrigeration is one of many good and useful ways of dealing with food. One of many, also including pickling by lactic fermentation, salting, drying, alcoholic fermentation, distilling, smoking, canning, and I’m probably missing something.

Our food regulation issues go beyond bartenders wearing gloves to mix Sazeracs. Food safety is good; I’m delighted to know that the flour I buy hasn’t been bulked up with talc. But as a culture, we need to reevaluate what defines “safe.” We need to find our cultural memories of foods that, as Katz says, inhabit that “creative space between fresh food and rotten food where most of human culture’s most prized delicacies and culinary achievements exist.” And the FDA and TTB need to catch up.

Sensory speculations on the Riedel Coca-Cola glass

The wine news is making hay this week with specialty glassware maker Riedel’s newest custom glass shape designed for Coca-Cola. While the process for selecting the glass sounds pretty empirical — a panel tried Coke out of a bunch of prototype glasses and chose the one they liked best — I can’t help but wonder about the sensory chemical logic behind the design. There’s no sense in being pretentious about this: even if Coke is a mass-produced beverage and a cultural and health nightmare, it’s still very sensorily complex (and unquestionably popular).

The glass recapitulates the wide-shouldered hourglass shape of the old-fashioned glass Coke bottle. That’s simple brand congruity: only the shape of the glass opening and the upper bowl affect the glass’s sensory properties in terms of directing aromatics to the nose and affecting how the liquid hits the palate. The dynamics of how Coke behaves in a glass will be wildly different than wine, with the possible exception of a sweet sparkling. Coke has bubbles, which actively convey volatile aromatics into the head space above the glass. It’s extremely high in both sugar and acid (phosphoric, as opposed to tartaric, malic, and lactic in wine) and contains caffeine, none of which should have a significant affect on aroma save insofar as the sugar increases viscosity. How that compares with the viscosity of wine, where alcohol and glycerol (and sometimes sugar) are responsible for viscosity, I’m not sure.

A spokesperson from Riedel says that the top of the glass is the same shape as the Riedel O-series Sauvignon Blanc glass, which immediately sent me on a search for methoxypyrazines and thiols (two prominent characterizers of Sauv Blanc) in Coke.

No joy, and no surprise: methoxypyrazines are responsible for green bell peppery notes, thiols for various tropical fruit and grapefruit-y aromas. It’s been a while since I had Coke, but I’m pretty confident that neither bell pepper nor passionfruit feature prominently in its flavor profile, even if its citrusy notes are easily agreed-upon. The Open Cola Project recipe, which we might reasonably expect to be in the right ballpark, calls for orange, lemon, and lime oils along with cassia (Chinese cinnamon), nutmeg, coriander, and lavender, and a lot of sugar and acid and caramel color.

From a theoretical perspective, then, I’m going to guess that the glass emphasizes Coke’s spritely and refreshing citrus aromatics first and foremost, leaving the sweet caramel/vanilla and spicy notes to bring up the rear. That testers would prefer that effect is congruent with the famous 1980’s and ’90’s Coke vs. Pepsi trials, which showed that Pepsi tended to win out in sip tests — both because it was sweeter and because it has a heavier initial citrus impression — but that Coke had more lasting fans — because it was less sweet, because Pepsi’s citrus tends to fade after the first few sips, and because Coke has a more robust caramel backbone.

On that basis, the glass should either be really good for a rum-and-coke — if you’re using cheap, sweet rum and want to maintain the refreshing balance of the drink against the extra sugar and body — or really bad for a rum-and-coke — if you’re using decent rum and want to play up the sweet/vanilla/barrel aromas.

If I get hold of a glass, I’ll test the theory — this is worth one small exception to my long-standing boycott of Coca-Cola (as well as Pepsi and a number of other food mega-companies) as a response to the company’s massive funding of campaigns against mandatory labeling of GMO-containing foods (and I can’t stand the stuff in any case). But I’d love to know what characteristics the glass brings out, and to play with fresh vs. flat, ice vs. no ice.

What’s next? A gin and tonic glass? A raw milk glass? An orange juice glass? A Pepsi glass? Tea glasses are apparently in the works, but I can only hope that they’ll differentiate oolong from lapsang souchong from pu ehr.

The problem with bagged wines

Using balled-up plastic wrap to ameliorate the funk of a corked bottle (because TCA adsorbs, or clings, to the cling wrap) is an old trick, but I’d hazard that our thoughts about wine and plastic didn’t go much further until the recent hullaballoo over BPA and the health risks it poses when it leaches out of packaging and into food. We’re newly aware, now, that plastics aren’t just neutral, inert, ignorable containers. The good news is that Scholle, the major manufacturer of the plastic bags inside box wine, asserts that their bags are BPA-free; more on that note here, a piece on wine safety I wrote for Palate Press.

But the wine safety coin has two sides: your safety, and the wine’s safety. Is the wine safe from the bag? “Scalping” is a known problem with plastics. Like people who can’t swim clinging onto the edge of a pool, hydrophobic (“water-fearing”) molecules decide that they like the plastic better than the nearly-all-water environment of the wine, and they hold on. With those molecules attached to the plastic instead of suspended in the wine, the wine’s flavor changes for the worse.

We know almost nothing about the specifics of what wine components end up attached to the plastic,** but several studies over the past few years have compared the composition of the same wine stored in different packaging systems for several months. Just out in the past few weeks is research showing that Vilana (a white varietal wine made in Crete, chosen because the researchers are from Crete) is perceptibly different, compared with the gold standard dark green glass bottle, after three months of bag-in-box storage. SO2 values were significantly lower after just a month in plastic, and low enough to signify a significant threat of white wine oxidation after two months. Titratable acidity increased significantly after two months, and a whole slew of volatile (aromatic) compounds decreased by a more or less significant degree.

Regrettably, these folks didn’t assess what effect those changes had, if any, on wine flavor; they only asked their tasters whether the bagged wine was different than the bottled wine (which it was) and not how it was different or whether it was more or less tasty.

Similar problems with bag-in-box Chardonnay were demonstrated by Hildegarde Heymann and her team at UC Davis last year, showing decreased volatiles and increased oxidation products with bagged wine, especially bagged wine stored at warm or hot temperatures. Individual wines are bound to be affected by bagging to different degrees: the most important flavor characteristics of Riesling will depend on a different set of molecules than those for Chardonnay or Vilana or Tempranillo. But it’s still safe to say that flavor scalping is an all-around problem for wines stored in plastic, and that bags leave wine dangerously susceptible to oxidation if left to sit around for a few months.

Most bag-in-box wine is purchased for immediate or near-immediate consumption, as is most wine in general in the United States. But, in every case, undesirable bag-related changes were accelerated by high temperatures. Between unrefrigerated shipping conditions and potentially careless in-store handling, I suspect that stores and wines with lower turn-over rates often don’t taste the way they should by the time they reach someone’s glass.

If we’re talking about the cheap stuff that goes into most boxed wine, and the (I’m going to be blunt) undiscriminating people who drink it, that’s inconsequential. But the push for better wine in “alternative” packaging (essentially all of which involves plastic, with the exception of refillable growlers) has been un-ignorable. This is great: solutions like bagged wine are generally more environmentally friendly, lower-cost, and super-sensible for someone (like me) who wants to have one glass of respectable wine a night (and who hasn’t yet sprung for a Coravin, which I’ll grant is the obvious and better solution). But the plastic system — or control over storage conditions, or preferably both — will have to improve before an educated consumer will want to entrust anything other than a casual backyard red to a plastic bag.

**I suspect that the companies who produce and sell bag-in-box wine actually have a lot of privately-generated data about wine-plastic interactions, but they’re not sharing.

New World Ingenuity, Interdisciplinarity, and New Zealand’s Sauvignon Blanc Programme

I’ve been reading James Halliday’s and Hugh Johnson’s lovely, rambling The Art and Science of Wine (Firefly, 2007), with something of the feeling that I’m sitting beside the old gentlemen’s fireplace listening to them hold forth. The book is short on citations and uneven on explanations, but full of two careers’ worth of wisdom. They describe without getting bogged down too much in the how or why of things, a good technique for teaching in a hand-waving, appreciative sort of way and for learning without paying too much notice to the reality that you’re being taught.

A theme — mostly tacit, but persistent — that sticks with the first few sections of the book is the difference in marketing and, therefore, winemaking strategies between the Old World (especially the classic French regions) and the New (especially Australia and New Zealand). Old World: make it and they will come. New World: no one knows who we are, so we’d better be distinctive and creative and different (and tasty). The socio-cultural-historical-economic factors driving that difference are too extensive to explain here and, besides, are largely a matter of common sense. And if it’s an oversimplification, it’s still largely true.

New Zealand has had to fight hard for a place in the global wine eye. Not only is the Kiwi wine industry young and from a remote location, their production is tiny. Yet they’ve unquestionably succeeded. We’ve all heard about Marlborough Sauvignon Blanc, and many if not most of us have heard about Marlborough and Central Otago Pinot Noir. New Zealand’s problem (okay, one of New Zealand’s problems) now is that they’ve played the region-grape association game too well. Kiwi Sauvignon Blanc can be too easy to stereotype. The industry seems especially concerned that their wine is too expensive, with cheaper Sauv Blanc from Chile and South Africa and elsewhere on the market, to keep being competitive without some kind of new consumer incentive.

So, the Kiwis are trying to teach their pony every trick in the book (and maybe invent a few new ones) in an effort called, creatively, the New Zealand Sauvignon Blanc Programme.

A partnership between essentially every major wine research institute in the country and a few major producers (notably Pernod Ricard), the Sauvignon Blanc Programme was first funded in 2004 and has a promise of continued funding through 2016. 2010-2016 is it’s second phase: “Sauvignon Blanc 2: ‘novel wine styles for new markets.'” Phase I largely served as information-gathering about Sauvignon Blanc-specific flavors and flavor production; phase II is aimed at optimizing and manipulating those flavors. The goal is to improve the quality of existing wine, but also to carve out new styles from the harmonious-but-homogenous* cat-piss-on-gooseberry  style for which New Zealand in general and Marlborough in particular has become world-famous.

The exemplary thing about this programme, in addition to it’s duration, is its interdisciplinarity. An effort to solve one problem — how to diversify Kiwi Sauvignon Blanc — is bringing together plant cell biologists and viticulturists and wine chemists and yeast geneticists and sensory scientists and cognitive scientists and assorted biotechnologists and industry folk — winemakers and growers and business and marketing people — all with different perspectives on how to solve that one problem. In the process, they’re creating solid new science, funding Masters and PhD students who will be important to the industry in a few years, and fueling market growth: good for research, good for industry.

Industry dollars are a main source of funding for wine research everywhere, but rarely is the collaboration this diverse or long-standing. The scope of SB1 and SB2 are fueling research far beyond just bringing a new and improved white wine to market. Here, the Kiwi homogeneity is serving them well: even if not everyone makes Sauvignon Blanc, the industry as a whole obviously rides on it. I wonder what would happen if other winemaking regions could identify one massive problem relevant to more or less everyone, focus their resources, and sponsor all of the region’s top researchers to help solve it.

I suspect that multiple different Sauvignon Blanc flavor profiles are going to be a hard sell to all but the most esoterically sophisticated Americans, though perhaps the more important UK market will be better educated enough to pay attention. We’ve already seen scientific publications from this project; we may just have to wait to judge the success of the wine.

Market pressures don’t always make for good science. But, sometimes, they do.